10 resultados para Molecular biology

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review focuses on the monoterpene, sesquiterpene, and diterpene synthases of plant origin that use the corresponding C10, C15, and C20 prenyl diphosphates as substrates to generate the enormous diversity of carbon skeletons characteristic of the terpenoid family of natural products. A description of the enzymology and mechanism of terpenoid cyclization is followed by a discussion of molecular cloning and heterologous expression of terpenoid synthases. Sequence relatedness and phylogenetic reconstruction, based on 33 members of the Tps gene family, are delineated, and comparison of important structural features of these enzymes is provided. The review concludes with an overview of the organization and regulation of terpenoid metabolism, and of the biotechnological applications of terpenoid synthase genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An integrated understanding of molecular and developmental biology must consider the large number of molecular species involved and the low concentrations of many species in vivo. Quantitative stochastic models of molecular interaction networks can be expressed as stochastic Petri nets (SPNs), a mathematical formalism developed in computer science. Existing software can be used to define molecular interaction networks as SPNs and solve such models for the probability distributions of molecular species. This approach allows biologists to focus on the content of models and their interpretation, rather than their implementation. The standardized format of SPNs also facilitates the replication, extension, and transfer of models between researchers. A simple chemical system is presented to demonstrate the link between stochastic models of molecular interactions and SPNs. The approach is illustrated with examples of models of genetic and biochemical phenomena where the UltraSAN package is used to present results from numerical analysis and the outcome of simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Molecular Biology Database Collection is an online resource listing key databases of value to the biological community. This Collection is intended to bring fellow scientists’ attention to high-quality databases that are available throughout the world, rather than just be a lengthy listing of all available databases. As such, this up-to-date listing is intended to serve as the initial point from which to find specialized databases that may be of use in biological research. The databases included in this Collection provide new value to the underlying data by virtue of curation, new data connections or other innovative approaches. Short, searchable summaries of each of the databases included in the Collection are available through the Nucleic Acids Research Web site, at http://www.nar.oupjournals.org.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalamins are stored in high concentrations in the human liver and thus are available to participate in the regulation of hepatotropic virus functions. We show that cyanocobalamin (vitamin B12) inhibited the HCV internal ribosome entry site (IRES)-dependent translation of a reporter gene in vitro in a dose-dependent manner without significantly affecting the cap-dependent mechanism. Vitamin B12 failed to inhibit translation by IRES elements from encephalomyocarditis virus (EMCV) or classical swine fever virus (CSFV). We also demonstrate a relationship between the total cobalamin concentration in human sera and HCV viral load (a measure of viral replication in the host). The mean viral load was two orders of magnitude greater when the serum cobalamin concentration was above 200 pM (P < 0.003), suggesting that the total cobalamin concentration in an HCV-infected liver is biologically significant in HCV replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All multicellular organisms have mechanisms for killing their own cells, and use physiological cell death for defence, development, homeostasis, and aging. Apoptosis is a morphologically recognizable form of cell death that is implemented by a mechanism that has been conserved throughout evolution from nematode to man. Thus homologs of the genes that implement cell death in nematodes also do so in mammals, but in mammals the process is considerably more complex, involving multiple isoforms of the components of the cell death machinery. In some circumstances this allows independent regulation of pathways that converge upon a common end point. A molecular understanding of this mechanism may allow design of therapies that either enhance or block cell death at will.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinal ganglion cells are the output neurons that encode and transmit information from the eye to the brain. Their diverse physiologic and anatomic properties have been intensively studied and appear to account well for a number of psychophysical phenomena such as lateral inhibition and chromatic opponency. In this paper, we summarize our current view of retinal ganglion cell properties and pose a number of questions regarding underlying molecular mechanisms. As an example of one approach to understanding molecular mechanisms, we describe recent work on several POU domain transcription factors that are expressed in subsets of retinal ganglion cells and that appear to be involved in ganglion cell development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of “Complexity Theory” think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal, and ecosystem biology, including all living organisms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The storage of long-term memory is associated with a cellular program of gene expression, altered protein synthesis, and the growth of new synaptic connections. Recent studies of a variety of memory processes, ranging in complexity from those produced by simple forms of implicit learning in invertebrates to those produced by more complex forms of explicit learning in mammals, suggest that part of the molecular switch required for consolidation of long-term memory is the activation of a cAMP-inducible cascade of genes and the recruitment of cAMP response element binding protein-related transcription factors. This conservation of steps in the mechanisms for learning-related synaptic plasticity suggests the possibility of a molecular biology of cognition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In molecular biology, the expression of fusion proteins is a very useful and well-established technique for the identification and one-step purification of gene products. Even a short fused sequence of five or six histidines enables proteins to bind to an immobilized metal ion chelate complex. By synthesis of a class of chelator lipids, we have transferred this approach to the concept of self-assembly. The specific interaction and lateral organization of a fluorescent fusion molecule containing a C-terminal oligohistidine sequence was studied by film balance techniques in combination with epifluorescence microscopy. Due to the phase behavior of the various lipid mixtures used, the chelator lipids can be laterally structured, generating two-dimensional arrays of histidine-tagged biomolecules. Because of the large variety of fusion proteins already available, this concept represents a powerful technique for orientation and organization of proteins at lipid interfaces with applications in biosensing, biofunctionalization of nanostructured interfaces, two-dimensional crystallization, and studies of lipid-anchored proteins.